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SUMMARY

Algebraic grid generation methods based on transfinite interpolation
called the two-boundary and four-boundary methods are applied for generating
grids with highly complex boundaries and yields grid point distributions that
allow for accurate application to regions of sharp gradients in the physical
domain or time-dependent problems with small length scale phenomena. Algebraic
grids are derived using the two-boundary and four-boundary methods for applica-
tions in both two- and three-dimensional domains. Grids are developed for dis-
tinctly different geometrical problems and the two-boundary and four-boundary
methods are demonstrated to be applicable to a wide class of geometries.

INTRODUCTION

Many different techniques have been developed for generating computational
grids required in the finite difference or finite element solutions of partial
differential equations on arbitrary regions. An emerging problem, however, is
the generation of grid systems on which solutions can be obtained for complex
boundary geometries. The importance of the choice of the grid is well known.

A poorly chosen grid may cause results to be erroneous or may fail to reveal
critical aspects of the true solution. Any partial differential equation
(e.g., the Navier-Stokes equations) expressed in a Cartesian coordinate system
can be transformed to a uniform grid in computational coordinate system, called
the boundary-fitted coordinate system. The objective of the grid generation
method is to provide the Jacobian matrix describing the transformation. Alge-
braic grid generation methods are highly advantageous for direct computation of
the physical domain as a function of uniform computational grid. These methods
generate boundary-fitted coordinate systems by algebraically defining distinct
boundaries of the physical domain and interpolating between these boundaries
(1) to (6). The algebraic boundary curves can be analytical function or numer-
ical interpolating functions. These algebraic grid generation methods can gen-
erate boundary-fitted coordinate systems without the need to solve the partial
differential equations. Precise control of the distribution of grid points in
the physical spatial domain can be achieved by stretching functions (7) to (9).
The Jacobian matrix of the transformation can be obtained rapidly and effi-
ciently by direct analytical differentiation or by numerical differentiation.
This is in contrast to the differential-equation grid generation method where a
partial differential/system is numerically solved by iterative techniques for
the mapping between the coordinate system of the physical spatial domain and
the boundary-fitted coordinate system. The transformation matrix (the Jacobian
matrix) must be obtained by numerical differentiation, and a grid change
requires a new solution of the partial differential equation system (10) to
(12). This approach can be very expensive for problems with three-dimensional



and time-dependent boundary-fitted coordinate systems. Once the boundary-
fitted coordinate system has been generated by an algebraic or a differential-
equation grid generation method, the set of governing equations, such as the
Navier-Stokes equations, are transformed analytically via a generalized coordi-
nate transformation. This results in a set of governing equations in which

all derivatives are with respect to the boundary-fitted coordinates. For the
finite-difference method of solution, the derivatives in the transformed
governing equations are replaced by finite-difference formulas (13) to (13) to
form the desired system of finite-difference equations.

Algebraic grid generation method based on transfinite interpolation called
the two-boundary and four-boundary methods are used to generate grids for two
and three-dimensional spatial domains with complex arbitrary geometries. A
detailed description of the methods is presented in reference 1. These methods
are highly versatile and have a wide variety of applications in both two and
three dimensions. In the two-boundary method, two separate nonintersecting
boundaries of the physical domain are defined by means of algebraic functions
(or numerical interpolation functions). These functions have as independent
variables, coordinates which are normalized to unity. The two boundaries that
must be mapped correctly from the physical spatial domain/to the computational
domain can have very complex shapes and can be two or three dimensions. The
two-boundary method can map all of the boundaries of a physical spatial domain

. correctly if the two curved boundaries connect two straight lines (in the two-

dimensional case) or flat surfaces (in the three-dimensional case).

Application of the two-boundary method based on transfinite interpolation
for generating grid points involves the following seven major steps (refs. 1

and 2):

1. Define the nature of the coordinate transformation.

2. Select a time stretching function.

3. Select the two boundaries of the physical spatial domain that do not
touch each other at any point and must be mapped correctly.

4. Describe the two boundaries selected in parametric form in coordinates
of the transformed domain.

5. Define curves that connect the two boundaries by using transfinite
interpolation.

6. Discretize the domain.
7. Control distribution of grid points by using stretching function.

The four-boundary method is used to algebraically generate grids for prob-
lems in which four boundaries of the spatial domain must be mapped correctly
from the physical spatial domain to the computational domain to the computa-
tional domain. The four boundaries that must be mapped corvectly can have com-
plex shapes and can be two or three dimensions. The four-boundary method is an
extension of the two-boundary method (ref. 1). The procedure for applying the
four-boundary method is similar to the seven steps described earlier for the



two-boundary method. The four-boundary method involves mapping the four bound-
aries of the spatial domain correctly to the transformed computational domain.

In this investigation, the two-boundary method is applied to generate grid
points for the two-dimensional step dump combustor, the two-dimensional venturi
nozzle, the two-dimensional step dump combustor with wedge-shaped solid bodies
embedded inside the physical spatial domain.

ALGEBRAIC GRID GENERATION FOR A STEP DUMP COMBUSTOR

The two-boundary method is applied to the two-dimensional axisymmetric
step dump combustor. Figure 1 shows the physical spatial domain of the two
dimensional axisymmetric dump combustor. Because of the symmetry of this prob-
lem, grid points are generated for only half of the dump combustor. The physi-
cal spatial domain consists of region A enclosed by curves 1, 2, 3 and 4 and
region B enclosed by curves 5, 6, 7 and 8 as shown in figure 1. If the upper
curves of the spatial domain shown in figure 1 are replaced by a single curve
displaying a sudden step at location B, the spatial derivatives of this/curve
forming the upper boundary of the domain will contain discontinuities at loca-
tion B. Then the metric coefficients of the transformation needed to obtain
solution to the conservation equation governing the problem will be discontinu-
ous at grid points on the boundary at location B and this discontinuity on the
boundary will propagate into the interior of the spatial domain. Therefore the
spatial domain of interest is divided into regions A and B which are patched
together across common boundaries as shown in figure 1. It is necessary to
match the grids across the common boundaries and to maintain control over the

grid spacing in these regions.

In the following, the seven steps of the two-boundary method are applied
to generate grid points for the step dump combustor.

Step 1 - Define the Coordinate Transformation

Since the two-dimensional spatial domain shown in figure 1 is nondeform-
ing and the grid points in the x-y-t coordinate system will not move, the
mapping of grid points in regions A and B involves the following coordinate

transformation:

Region A:
et o Il
1 ¢ n < JUI
(xp,yA,t) = (E,n,0) (N
where
t = t(ov (2)
(3

xp = xp(€,n)



YA = YA(E,n) (4)

Region B:

ILT < & ¢ IL

JLT ¢ n ¢ JL
(xg,yg,t) = (£,n, 1) (5)

where

t = t(1) | (6)
xg = xg(£,n) (7
yg = yg(&,n) (8)

where x-y-t represents the coordinate system of the physical domain and
represents a boundary-fitted coordinate system of the transformed domain

(fig. 1).

Step 2 - Select a Time Stretching Function

Since there is no stretching in time for both regions A and B, the rela-
tionship between t and <t 1is to be taken

t == 9

Step 3 - Select Two Boundaries for Each Region

curves 1 and 2 in region A are
1 and n = JL1, respectively.
= JL1 and n = JL, respectively

For the spatial domain shown in figure 1,
chosen to correspond to coordinate lines n =
Curves 5 and 6 are chosen to correspond to n

(fig. 1), i.e.,

Region A:

X1 = x(E,n = 1) = X5(&) ao

Y1 = y&,n = 1) = Y3(§) an

Xo = x(&,n = JL1) = Xo(E) (12)

Yo = y(E,n = JL1) = Yo(&) (13
Region B:

Xg = x(g,n = JL1) = Xg(&) (14)

Yo = y(§,n = JL1) = Tg(E) (15)



JL) = Xg(&) (16)

1]
[}

x(E,n

"

X6
JL

Yo = ¥y(&,n Ye(E) an
The two boundary method can map all of the boundaries of the physical domain
correctly if the remaining boundaries are straight lines as in the present
problem. As will be shown in step 4, the remaining boundaries, curves 2, 4 of
region A and curves 7, 8 of region B, are mapped to coordinate lines § = 1,

£ =1IL and £ = IL1 and £ = IL, respectively.

Step 4 - Define the Two Boundaries Selected in Parametric Form

Once the two boundaries have been chosen, the next problem is the repre-
sentation of these two boundary functions in parametric form in terms of the

parametric variable ¢. Note that since boundary lines 3 and 4 are mapped to
coordinate line & =1 and £ = IL, respectively, the variable can only vary
between 1 and IL ( note that x varies between A and C, see fig. 1).

One approach is to choose the parametric variable & such that

X - Xmin

E = —v E :n $ECE
xmax - Xmin min max

(18)

By substituting equation (18) into equations (10) to (17), the desired paramet-
ric equations are obtained.

Region A:
K (E) = X, () = (B - ME + A, R Rl (19)
X)) = Xy (E) = (C - BIE + B, Ll ¢ g = A= g CIL (20)
Y,(E) = D, 1 CECIL 21)
1,06 = E, 1k ¢ IL (22)

Region B:

Xs(E) = (C - B)E + B, L cg = 5= E Il (23)
T8 = E 24)
Kg(E) = (C - BYE + B, Ll ¢ g = 2= g 1L (25)
1) = E v a (26)

where A, B, C, D, E, and a are constants defined in figure 1.




Step 5 - Define Curves That Connect the Two Boundaries

By using transfinite interpolation based on Hermite interpolation to
interpolate between the boundaries selected in step 3, (i.e., curves 1, 2 and
curves 5, 6), the connecting curves can be readily obtained. Since the bounda-
ries curves are themselves functions and can be determined independently, equa-
tions (3), (4) and (7), (8) can be rewritten as cubic polynomials.

Region A:
XA(E.n) = X](E)h](n)

YA(E,n) = Y](g)h](n)

Region B:
XB(E,n) = Xs(g)hs(n)

YB(E,n) = YS(E)hs(n)

+ XZ(E)hz(n)
+ ax(g,n = 1) h,(n) +
an 3
+

Yz(i)hz(n)

ay(E,n = 1)
+ an h3(n) +

+ X6(§)h6(n)

. Ix(g,n = JL1) h

an 7(n) +

+ Y6(§)h6(n)

+ 9y(g.n = JLD) ha(n) +

an 7

IX(E,n = JL1)

o ha(n) (27)
ay(£,n = JL1)

o hy(n) (28)
AX(E,n = JL)

3 hg(n) (29)
ay(E,n = JL)

o hg(n) (30)

X1, Y1,

where x3(&,n), ya3(&,n), xg(&,n), and yg(§,n) are connecting curves:
X2, Y2, X5, Yg, Xg, and Yg are given by equations (19) to (26); hy(n), hp(n),
h3(n), hqln), hs(n), hgln), h7(n), and hgln) are the Hermite polynomials

(ref. 3.

Applying a cubic connecting function implies that the physical grid can be
forced to be orthogonal at the boundaries. In order for the connecting curves
to connect curve 1 perpendicularly in the physical domain, the dot product of

ar (the vector tangent to curve 1) and 3n (the vector tangent to the connect-
ing curve) at any point on curve 1 must be zero, i.e.,

> >
eg en =0
or
o, I, [ax<g1n =D 3, En=1 *] -0 (31)
0 g 3n an e
X aen =0 Mooy (32)
dz an dg an B



Applying this procedure will force the grid to be orthogonal at the boundary

curve 1. Equation (32) gives the foll

ax(&,n =1)
an

ay(E,n = 1)
an

Control of the orthogonatity for the connecting

2, 5, and 6 is accomplished in a simil
conditions:

ax(E,n = JLD)

an

ay(E,n = JL1)
an

3x(E,n = JLD

an

ay(E,n = JLD)

an
ax(&,n = JL)
an
ay(E.n = JL)
an

Ki(g), Ko(&), Kg(&), and Kg(g) can be related

owing two conditions:

dY](E)

= —K](E) dE (33
dX](E)

= +K](§) ——az—— (34)

functions at other boundaries

ar manner and yields the following

de(E)

= -Kz(g) dE (35)
dXZ(E)

= +K2(£) ‘—EE—— (36)
dYS(E)

= —KS(S) ——ag—— (37
dXS(E)

= +K5(§) ——Eg—— (38)
dY6(§)

= —K6(£) dE (39)
dX6(E)

= +K6(£) dE (40)

to the magnitude of the boundary

curves and are chosen by trial and error to ensure the grid lines do not over-

lap each other at the interior of the

]
i}

Ky (8)
Kg (&)

Substitution of equations (33) to (42)
gives the desired connecting curves.

Ko (&)

Kg(E)

physical domain. For the present problem

KelYo(E) = Y1(8)] (41)
KelYg(E) - Y5(&)] (42)

into equations (27), (28) and (29), (30)
Given the connecting curves and paramet-

ric boundary curves, a uniform computational grid can be mapped onto the physi-

cal domain forming a physical grid.

Step 6 - Discretize the Domain

The time domain in the €£-n-t
ing it with equally-incremented time |

coordinate system is discretized by replac-

evels, i.e.,



" =nAt, n=0,1,2, ... (43)
where " denotes time at the nth time level and At is the time-step size.

The spatial domain in the £-n-t coordinate system is discretized by
replacing it with equally spaced grid points. The locations of the grid points
are given by

Region A:
£i = 1, i=1,2, .. .,IL1, ..., IL (44)
nj = J, j=1,2, .. .,3J0, .. .,3L (45)
Region B:
£i = 1, i=IL1, . . ., IL (46)
nj = J, j=Ju, .., L (47)

Substitution of equations (44) and (45) into equations (27), (28) and equa-
tions (46) to (47) into equations (29), (30) gives the grid points in the phys-
ical spatial domain.

Step 7 - Control Distribution of Grid Points

The two-boundary method is applied to generate grids inside the step dump
combustor. Boundary layer flow near the wall of the combustor is characterized
by strong viscid-inviscid interactions; in addition, one expects/steep velocity
gradients at the injector location upstream of the rearward-facing step region.
Thus, more grid points should be clustered near curves 2, 5, 6, and 8 along
X = Xipj- Concentration of grid points near curves 2, 5, 6 is accomplished by
replacing n in equations (27) to (30) by the following equation

(B +1) - (B - DB + D/ - 118
n n n n

(48)
[B + /@B - D18
n n

In the above equation, B, 1s a constant greater than unity. To concentrate
more grid points near curve 8, £ in equations (29) and (30) is replaced by the

following eqguation

(B + DIGB + DIB - 1y1¢28-1 5+ |
T | (49)

2{1 + [(B -+ /(B -1
n n

To concentrate grid points along «x = Xinj, replace & in equations (27)
and (28) by the following expression

sinh(B g& - a)l
ginj + 1 (50)

sinh(aBg)



where

| 1+ (e & - i

a =5 1In
78 _B
3 1+ (e & - D

inj

inj

In the above equations, By 1is a constant greater than zero. By varying the
parameter B, and Bz, is different distributions of grid points can be
obtained next to curves 2, 5, and 6 and along curve 8 and x = Xjpj-.

Figure 2 shows grid points generated inside the axisymmetric step dump
combustor with no stretching functions used and with 51 grid points spanning
the € direction and 21 grid points spanning the n direction. The grid
system shown in Figure 3 was generated by using stretching functions (7) to
(9). Approximately 50 sec of the IBM 370 CPU time is required to generate the
grid system shown in figure 2.

ALGEBRAIC GRID GENERATION FOR A VENTURI NOZZLE

The two-boundary method is applied to the axisymmetric venturi nozzle.
Because of the symmetry of this problem, grid points are generated for only
half of the nozzle. Fiqgure 4 shows the physical domain of the nozzle geometry.
By following step 1 to 7 described above, a system of grid points is generated
in the physical spatial domain. The following set of parametric boundary equa-
tions are used (step 4)

X7(E) = (C - ADE + A (51)
Y1(E) = D (52)
X2(E) = (C - ADE + A (53)
V,(6) = (E+a) +a; cos THEMEL 1 g 2= h (54)
7(C - AE] B - A
= (£ + az) - 3, COs ) , C_A ¢ £ < IL (55)
X - A
E=CTA

where A, B, C, D, E, aj, and ap are constants defined in figure 4.

Figure 5 shows grid points generated inside the axisymmetric nozzle with
no stretching function used and with 51 points spanning the & direction and
21 grid points spanning the n direction. Approximately 50 sec of the IBM 370
CPU time is required to generate the grid system shown in figure 5. The non-
uniformly distributed grid system shown in figure 6 was generated with the use
of stretching function. Comparing fiqure 5 and 6 indicates that the stretching
functions employed can cluster grid points near the wall of the nozzle.




ALGEBRAIC GRID GENERATION FOR A STEP DUMP COMBUSTOR
WITH EMBEDDED SOLID BODIES

To evaluate the feasibility of the two-boundary method, a two-dimensional
axisymmetric step dump combustor with geometrically-complex embedded solid bod-
ies is considered. The flow field domain is divided into five subdomains as
shown in figure 7, each covering only part of the whole field. Grid points are
generated inside each of the subdomain using the two-boundary method. The grid
systems of these subdomains are interfaced with each other in such a way that
the grid lines are continuous at the common boundaries.

Figure 7 shows the physical domain of the step dump combustor geometry
together with the partitioned subdomains. The two-boundary method is applied
to each of regions A, B, C, D, and E. The boundary curves are defined as
described below.

Region A:
L4 ¢ £ ¢ IL
1 ¢ n ¢ JL1
Curve 1:
X - E
=€+ F-DFE) (55)
Y (E) = P (56)
Curve 2:
X - E
X, (8) = €+ (F - D(F (57)
V,(8) = Q (58)
Region B:
<& <1IL
JLT < n ¢ JL2
Curve 5:
X - A
X(E) = A + (B - A)(B - A), 1 £ ¢ ILT (59)
- B
-8+ - (). ILl < € ¢ IL2 (60)
=C+<D-c><"‘c> IL2 < £ < IL3 61)
D-¢) £E <



Curve 6:

Region C:

Curve 9:

x - D

=D+ (E - D)(E—j—5>, 113 ¢ £ ¢ IL4
x - E
SEsFoD(EE),  IecEcIL
Vs(E) = P, 1 <€ ¢ IL2
X - C
P+ Q- P)<5—:—E>, IL2 ¢ £ ¢ IL3
= Q, IL3 ¢ g < IL
Xe(E) = Xg(B), 1 <€ ¢ IL
- Xg(E), ILT < £ ¢ IL2
= Xs(g), IL2 < § < IL3
- Xs(E), IL3 ¢ £ < IL4
- XS (E), 14 ¢ £ ¢ IL
Ys(g) =S, 1 ¢ & ¢<IL2
X - C
-s-(s-m(FTg),  I2<Ec I3
- R, I3 < € ¢ IL
IL4 < g < IL
JL2 ¢ n < JL3
X - E
Xg(g) =E + (F - E)<F———E>

X - E
14(8) = E+ F - D(FF)
K1oCE) = Xg(®)

Y]O(E) =T

t

(62)

(63)

(64)

(65)

(66)

(67)

(68)

6

(70)

an

(72

(73)

(74)

(75)

(76)

(77

(78>




Region D:

1<E Il
JL3 < n ¢ JL4
Curve 13:
X]3(£) = XS(E), 1 ¢ & ¢ Il
= Xs(g), ILT < & ¢ IL2
= XS(E), IL2 < § ¢ IL3
= Xs(g), IL3 < § ¢ IL4
= Xs(g), IL4 < § ¢ IL
Y]3(§) = S, 1 <& ¢ IL2
‘X = C
s+ (T - (5 5, L2 ¢ £ < IL3
=T, IL3 ¢ & < IL
Curve 14:
X]4(£) = XS(E), 1 ¢ < Il
= Xs(g), ILT ¢ § ¢ IL2
= Xs(g), IL2 < § ¢ IL3
= XS(E), IL3 < § ¢ IL4
= Xs(g), IL4 < § ¢ IL
Y]4(g) = U, 1 ¢ g < IL2
Region E:
ILT ¢ g<IL
JL4n<JL
Curve 17:
X]7(5) = XS(E), 1 <& ¢ IL2

(79

(80)

(81)

(82

(83)

(84)

(85)

(86)

87

(88)

(89)

(90)

91

(92>

(93)



XS(E), IL2 < £ ¢ IL3 (94)

= X (), IL3 < E ¢ L4 (95)

= Xg(E), IL4 < £ ¢ IL (96)

Y €8 = U, 1Ll < & ¢ IL (97)

Curve 18:

X g¢E) = Xg(E), 1 ¢ g < IL2 (98)

= X (D), IL2 ¢ £ ¢ IL3 (99)

= X (E), IL3 < £ ¢ IL4 (100)

= Xg(E), L4 < £ ¢ IL (101)

Y g8 =V, ILl < £ ¢ IL (102)

where the constants appearing in the above equations are defined in figure 7.
The functional form for the connecting curves can be readily obtained by using
Hermite interpolation to interpolate between the two boundaries selected for

each of the subdomain.

Region A:
XA(E,n) = X](E)h](n) + Xz(g)hz(n)

Ix{E,n =1 ax{&,n = JL1D
+ 3n h3(n) + o h4(n) (103)
YA(g,n) = Y](E)h](n) + Yz(g)h2<n)
ax{&,n = 1 ax(&,n = JL1D
+ P h3(n) + on h4(n) (104>
Region B:
XB(E,n) = Xs(g)hs(n) + X6(£)h6(n)
IX(E,n = JLD) ax(&,n = JL2)
+ an h7(n) + o h8(n) (105)
YB<€,n) = Ys(g)hs(n) + X6(g)h6(n)
Ix(E.,n = JLI) ax<(g,n = JL2)
+ an h7(n) + n h8(n) (106)

13



Region C:
XC(E,n) = Xg(g)hg(n) + Xlo(i)hlo(”)

Ix(&,n = JL2) 3x(E,n = JL3)
+ 3n h]‘(n) + 3 hlZ(n) (QID)
YC(E,n) = Yg(i)hg(n) + Y]O(E)hlo(n)
Ix(E,n = JL2D X(E,n = JLI)
+ n h]](n) + an hTZ(n) (108)
Region D:
XD(E,n) = X]3(£)h]3(n) + X]4(£)h]4(n)
ax(E,n = JLY ax{E,n = JL4)
+ an h]s(n) + an h]6(n) (109
YD(g,n) = Y13(£)h]3(n) + Y]4(£)h]4(n)
ax(&,n = JLI) ax(E,n = JL4)
+ 3n h]s(n) + an h16(“) QR
Region E:
XE(i,n) = X]7(§)h]7(n) + X18<£)h]8<n)
ax(&,n = JL4) ax{&.n = JL)
¥ n h19(n) + an hZO(”) arn
YE(E,n) = Y]7(§)h}7(n) + Y]B(g)h]8(n)
ax{&,n = JLA) Ix(¢,n = JL)
+ n h]9(n) + an hZO(n) (112)

The Hermite polynominals are described previousiy derivative terms appear-
ing in equations (103) to (112) are chosen so that the connecting curves per-
pendicularly intersect the boundaries selected above. Grid points inside this
step dump combustor configuration are generated by using equations (103)
to (112). Figure 8 shows grid points generated inside the spatial domain of
this step dump cumbustor with 51 grid points spanning the £ direction and
21 grid points spanning the n direction. Approximately 50 sec of the IBM
CPU time is required to generate the grid system shown in figure 8. Figure 9
shows the grid system generated with the use of stretching functions.



ALGEBRAIC GRID GENERATION FOR A RECTANGULAR DUCT WITH ARBITRARY
CROSS SECTIONS AND EMBEDDED SOLID BODIES

In this section, the four-boundary method (ref. 1) is applied to generate
grid points for an axisymmetric rectangular duct with arbitrary cross sections
and embedded solid bodies as shown in figure 10.

The grid is case in three dimensions by treating the three-dimensional
spatial domain as a stack of two-dimensional spatial domains. The three-
dimensional grid is generated by generating two~-dimensional grids at equally
incremented locations along the z-axis in the x-y-z-t coordinate system.
Because of the symmetry of this problem, grid points are generated for only
half of the duct shown in figure 10. The three-dimensional grid is obtained
by rotating the upper half description about the axis of symmetry. Figure 11
shows the physical domain of the two-dimensional spatial domain. The spatial
domain of interest is divided into regions A and B. The four-boundary method
is applied to each of regions A and B by considering curves 1, 2, 3, and 4 as
boundary curves of region A and curves 5, 6, 7, and 8 as boundary curves of

region B.

The boundaries are defined as described below.

Region A:
1<g Il
1 <n < Il
Curve 1:
- - _ (g -1 ]
(& =1 = X © = [ R s RD] - R (113)
y](i,n = 1) = Y](E) = R tan ay (114)
Curve 2:
- _ I R } _
(6 = LD = X0 = [Br R+ RD] - R (15
yz(E,n = JL1) = 7 (&) = R tan a, (116)
Curve 3:
x3(E = 1,nm) = X3(n) = -R_ ain
- _ _[on=1_ -
Vo€ = 1un) = Yo(n) = [JL] - (R tan a, - R tan a])]+ R tan « (118)
Curve 4:
x4(§ = IL,n) = X4(n) = R+ (11

15



|
‘ _ _ _[n-1 _
Yu(E = L) = Yo(n) = [JL] -1 R tan «, - R tan a])]+ R tan a (120

Region B:
1<g Il
JLT ¢ n ¢ JL
Curve 5:
- - _ (e ] -
ks(Eun = L1 = Xg(8) =[Sy R+ RO - R_ (21
Ys(En = JLD) = Y(8) = R tan a (122)
Curve 6:
L - _ [ ] - |
g€ = I = X®) = [y R+ RO - R (123)
YglEun = JU) = Yg(E) = R tan « (128)
Curve 7:
| (& = Tun) = Xy(n) = R_ (125)
, . _ [n= bl _ ]
yo(E = T = Yotn) = [3525 (R tan o - R tan ap)+ R tanay (126
Curve 8:
, - _ [n=JdLt _ ]
(€ = ILn) = Xg(n) = [J70507 (R tan @y - R tanap|s R tan @y (12D)
Yg(€ = IL,n) = Yg(n) = R (128)

where R, R,, R_ ay, a2, a3, and a4 are defined in figure 11.

By using Hermite interpolation, cubic polynominals are used to generate
connecting curves for the boundary curves. The connecting functions are

Region A:
Xy (€)= 12+ xBP @ - xTP@ < 1 - 12 - 1Lmn )
(12 (12)
ax1¢ 2w ax 1 - 1L
- 5 n,CE) - e hg(E) (129)
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Region B:

Vg = ¥ vO3P ¢ - v 126 <1 mhge - v 12 - 1L mng )
(12) (12)
ay (£ = 1,n) X (¢ = IL,m)
, 5 h(E) - 5 hg(E) (130
where
X2y = X (DR () + X, (EDh,(n)
A Rl A 2° 5702
9x(E,n = 1) ax(E,n = IL1)
R ———§§;————- hy(n) + oz h4(n) (131
(34)
K3 (g = Xy (8) + X, (mhg (E)
N Qiiﬁgg—liﬂl ho(E) + x (g gglL’”) hg(E) (132)
Y2 ey 2 Y Eh () + Y, (EDh, ()
1']—] ]n 2 2'1
ay(E,n = 1) 3y(E,n = JL1)
+ n h3(n) + an h4(n) 133
(34)
YOV n) = Yk (E) + Y (I (©)

ay(E = 1,n) ay(g = IL,n)
+ 3% h7(§) + 3% h8(§) (134)

hy(€), ho(€), h3(g), hg(EC, hg(E), hg(g), h7(E), and hg(g) are Hermite polyno-
mials and are described previously.

The mapping between the physical domain and the transformed computational
domain is obtained by using equations (113) to (134). Figure 12 shows the
transformed domain in three dimension. Figure 10 shows grid points generated
inside the axisymmetric rectangular duct with arbitrary cross section and solid
bodies embedded in the interior physical domain with 41, 21, 31 grid points
spanning the £, n, and ¢ directions, respectively. Approximately 100 sec of
the IBM 370 CPU time is required to generate the gird system shown in figure 10.

CONCLUSION
Algebraic grid generation method called the two-boundary method has been
used to generate grid points inside the spatial domains of an axisymmetric step

for dump combustor, an axisymmetric venturi nozzle and a step dump combustor
with wedge-shaped solid bodies embedded inside the physical spatial domain.

17



Grids are generated for the three-dimensional rectangular duct with arbitrary
cross sections and with solid bodies embedded inside the spatial domain using
the four-boundary method. Grid generation for these complex arbitrary geome-
tries can be obtained at a reasonably fast computer rate. The successful
generation of grids for the cases studied demonstrates the usefulness and via-
bility of the two-boundary and four-boundary algebraic grid generation methods.

10.
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FIGURE 1. - (A) THE PHYSICAL SPATIAL DOMAIN. CURVE 1 IS DESCRIBED BY Y; = D WHEN x €
[A.C}. CURVE 2 IS DESCRIBED BY Y, = E WHEN x € {A.C). CURVE 5 IS DESCRIBED BY Y5 = E
WHEN X € [B.CJ. CURVE 6 IS DESCRIBED BY Yg = E + a WHEN x € [B.C]. A. B, C, D. E.

AND a ARE CONSTANTS. (B) TRANSFORMED COMPUTATIONAL DOMAIN.
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FIGURE 2. - GRID FOR STEP DUMP COMBUSTOR. FIGURE 3. - GRID FOR STEP DUMP COMBUSTOR, STRETCHING FUNCTION
USED.
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FIGURE 4. - (A) PHYSICAL SPATIAL DOMAIN. CURVE 1 IS DESCRIBED BY Y, = D WHEN x € [A.C].

CURVE 2 1S DESCRIBED BY Y, = (E + 37) + 2, cos[lﬁ-x_—'AA)] WHEN x € [A.B] AND BY Y, =

(E + 2y - 3 cos [EX BT WiEN x € [B.C1. A, B C, D. E. 3z AND 3, ARE CONSTANTS.

(B) TRANSFORMED COMPUTATIONAL DOMAIN.
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(B) TRANSFORMED COMPUTATIONAL DOMAIN.
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FIGURE 8, - GRID FOR STEP DUMP COMBUSTOR WITH EMBEDDED SOLID FIGURE 9. - GRID FOR STEP DUMP COMBUSTOR WITH EMBEDDED SOLID BODIES.
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FIGURE 10. - GRID FOR RECTANGULAR DUCT GEOMETRY WITH EMBEDDED SOLID
BODIES.
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FIGURE 11. - (A) TWO-DIMENSIONAL PHYSICAL SPATIAL DOMAIN. (B) TWO-DIMENSIONAL COMPUTATIONAL
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